翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

dual topology : ウィキペディア英語版
dual topology

In functional analysis and related areas of mathematics a dual topology is a locally convex topology on a dual pair, two vector spaces with a bilinear form defined on them, so that one vector space becomes the continuous dual of the other space.
The different dual topologies for a given dual pair are characterized by the Mackey–Arens theorem. All locally convex topologies with their continuous dual are trivially a dual pair and the locally convex topology is a dual topology.
Several topological properties depend only on the dual pair and not on the chosen dual topology and thus it is often possible to substitute a complicated dual topology by a simpler one.
==Definition==
Given a dual pair (X, Y, \langle , \rangle), a dual topology on X is a locally convex topology \tau so that
:(X, \tau)' \simeq Y.
Here (X, \tau)' denotes the continuous dual of (X,\tau) and (X, \tau)' \simeq Y means that there is a linear isomorphism
:\Psi : Y \to (X, \tau)',\quad y \mapsto (x \mapsto \langle x, y\rangle).
(If a locally convex topology \tau on X is not a dual topology, then either \Psi is not surjective or it is ill-defined since the linear functional x \mapsto \langle x, y\rangle is not continuous on X for some y.)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「dual topology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.